
T H E  D I F F E R E N C E  M E T H O D  O F  S O L V I N G  T H E  C O N J U G A T E  

P R O B L E M  OF H E A T  E X C H A N G E  D U R I N G  GAS F L O W  IN A 

T H I C K - W A L L E D  C H A N N E L  B E T W E E N  C O M M U N I C A T I N G  V E S S E L S  

G.  T ,  A l d o s h i n ,  V .  I .  Z h u k ,  
B .  l~, K ~ r t ,  a n d  K.  M. S h l y a k h t i n a  

UDC 536.24 

An algor i thm is developed for  the numerica l  solution of a nonlinear sys tem of differential  
equations descr ibing the p rocesses  of gasdynamics  and heat exchange during the t r ans fe r  
of gas f rom vessel  to vesse l  through a flat,  annular,  or  cyl indrical  channel with walls of 
finite thickness .  

Recently a number  of problems of modern technology -- the regulation of heat exchangers ,  the creation 
of sys tems  for  the supply of energy to a hot gas ,  sys t ems  for  the " ref r igera t ion"  of pipelines and vesse ls ,  etc. 
--  have required the creat ion of methods for  calculating conjugate problems of heat exchange: The joint solu- 
tion of the equations of convective heat t r ans f e r  in the fluid and the equation of heat t r ans f e r  in the channel 
wall of the channel (vessel). The joining of the solutions at the fluid--wall boundary in an exact formulation 
must  be ca r r i ed  out using boundary conditions of the fourth k ind .  In the case of turbulent flow of a c o m p r e s -  
sible gas the possibil i ty of obtaining solutions of this kind is problemat ical  because of difficulties ar is ing in 
the determinat ion of the t empera tu re  field in the fluid. But since in engineering applications one usually 
needs knowledge of the s t r eam pa rame te r s  averaged over  the c ros s  section and of the t empera tu re  distr ibution 
in the channel walls,  one can use one-dimensional  equations of hydraulics to descr ibe  the flow and make the 
solutions conjugate using boundary conditions of the third kind [1]. The problem was analyzed in suc, h a f o r -  
mulation in [2] for  a channel with thermal ly  thin walls and in [3] for  a channel with walls of finite thickness and 
with assigned conditions at the channel entrance.  

The problem of determining the t empera tu re  field in the walls of the channel and of the vessels  and of 
determining the s t r eam pa rame te r s  during the t r a n s f e r  of gas f rom vessel  to vesse l  or  during the escape of 
gas f rom a vesse l  through a long channel is analyzed in the present  repor t .  A d iagram of the problem is p r e -  
sented in Fig. 1. The vesse ls  ~21 and ~22 a re  connected by a flat, annular,  or  cylindrical  channel 23. The 
annular and the flat ax i symmet r i c  channels a re  bounded by the walls ~4 and ~5; in the case of cyl indrical  and 
of flat symmet r i ca l  channels , the  inner  wall ~25 is absent.  The walls of the vesse ls  consist  of a finite number  
of sections ~l k, ~2 k, k = 1, 2 . . . . .  each of which can be flat (~k = 0), cylindrical  (~k = 1), or  spher ical  ((rk = 
2). The distr ibution of the pa ramete r s  in the entire region of calculation is known at the initial t ime,  S tar t -  
ing f rom this t ime a gas ,  whose flow rate  and heat content are  known functions of t ime,  enters  the v o l u m e d  i. 
The subsequent variat ion of the t empera tu re  field in the walls of the s t ruc ture  and of the pa ramete r s  of the 
gas is calculated under the following assumptions:  The p rocesses  of filling and emptying of the vesse ls  are  
assumed to be quasis tat ic;  heat conduction in the direct ion normal  to the surface is allowed for in the walls of 
the vesse ls ;  heat conduction in the normal  and axial di rect ions  is allowed for in the walls of the channels; the 
thermophysica l  proper t ies  of the mater ia ls  of the walls of the channel and the vessels  are  known functions of 
the t empera tu re  and the coordinates;  boundary conditions of the f i r s t ,  second, or  third kind a re  set up at the 
outer surfaces  Fi, i = 3, 6, 7, 8, of the walls of the channel and the vesse ls  (henceforth, for  de te rminacy ,  
boundary conditions of the f i rs t  Mnd are  considered);  the gas is assumed to be ideal; the heat capaci ty ,  t h e r -  
mal conductivity, and molecular  weight of the gas depend on the tempera ture .  

The p roces se s  in the vesse ls  are  descr ibed by the following equations: For  the f i rs t  law of t he rmo-  
dynamics (1), of mass  balance in a vesse l  (2), of state (3), and the heat-conduction equation for sections of 
the walls of the vesse ls  (4): 

d m i U i  = _ _  P i  d V i  t - .- k d-t- ~ + CJ~ + (-- 1) F~)~u~[~ --e~q~, + O~; (1) 
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Fig .  1. Ca lcu la t ing  d i a g r a m .  

dm~ 
dt 

- -  Gi -,  (-- 1)tF~%iul; (2) 

P~Vi = miR (T,) T~; (3) 

OT~ __ g--ak OT~ (4) 

The condi t ions  of conjugat ion  with r e s p e c t  to  the t e m p e r a t u r e  in the f o r m  of boundary  condi t ions  of  the th i rd  
kind (5) a r e  se t  up at  the i n n e r  s u r f a c e s  F1 k and F2k of sec t ions  of the walls  of the v e s s e l s .  The boundary  con-  
d i t ions  (6) a r e  a s s i g n e d  at the ou te r  s u r f a c e s  rTk and Fsk: 

OT~ k (Ti ~ (0, t)) q~i; (5) 
ff ~ ~,i - -  

T~ (H ~, l) = Ta ~ (t). (6) 

With known p a r a m e t e r s  of flow at the inle t  and out let  of the channe l  the s y s t e m  of equat ions  (1)-(6) is c losed 
by the cho ice  of c r i t e r l a l  funct ions  fo r  the h e a t - e x c h a n g e  coef f ic ien ts  and by the a s s i g n m e n t  of the t ime  d e p e n -  
dences  of  the v o l u m e s  of the v e s s e l s  and the a r e a s  of  s ec t ions  of the wal l s ,  as  well  a s  the dependence  of the flow 
ra t e  G 2 at the exit  f r o m  the s ink  v e s s e l  ~2 2 on the  p a r a m e t e r s  of the  gas  in and outside the v e s s e l  and on t ime :  

Nu~ -- ~p~ (Gr, Pr . . . .  ); V~ = V, (t); F~, = F~, (t); 

G2--G2(T2, Pz, P~2, t . . . .  ). 
(7) 

In the  s y s t e m  of equat ions  (1)-(7) i = 1, 2; P3i, ui ,  and I3i a r e  the dens i t y ,  ve loc i ty ,  and heat  content  of the gas  
at the  inle t  (i = 1) and exit  (i = 2) of the  channel ;  the  f low ra t e  is  pos i t ive  dur ing  the f i l l ing and negat ive  dur ing  
the empty ing  of the v e s s e l s .  The ini t ia l  condi t ions  a r e  a r b i t r a r y :  

m~ (0) = m~o; T i (0) = T,o; T~ (y, O) ~ T~o(y). (8) 

The o n e - d i m e n s i o n a l  nons teady  flow of a c o m p r e s s i b l e  fluid in a channel  of cons tan t  c r o s s  s ec t i on ,  with a l low-  
ance  f o r  the  r ad i a l  and ax ia l  heat ing of the channe l  wal l ,  is  d e s c r i b e d  by the  s y s t e m  of equat ions  

OP . OP Ou P (R T d R  ) (OT OT) (9) 
Ox R~- dT -07 " u -Ox. = O; 

_ _  Ou RT OP u z Ou -f- u ~ - - ;  (10) 
Ot Ox P Ox 2d 3 

OT OT x - -  I T ( OP OP 4 ) 
. . . .  u . . . . .  Ox d~ Ot Ox • P Ot § u - -  -~ . . . .  (q~ + q6) 

U 2 
+ ~ - -  ; (11) 

2 d3c p 

0 (~l(X, T) OTt + ~ ~-x )' (12) 
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where  cr = 0 fo r  a flat  channe l  and a = 1 f o r  an a x i s y m m e t r i c  channel .  The conjugat ion  condi t ions  (13) a r e  
se t  up at the s u r f a c e s  F 4 and F 5 of contac t  between the gas  and the channel  wal ls ,  whi le  the boundary  condi t ions  
(14) a r e  se t  up at the ou te r  s u r f a c e s  F 3 and F6 of the  channel  wal ls :  

q~ ~- ( - -  1) ~-l ~'i (T)-. 0T~ = cz~ (x, t) (T i (x, O, t) - -  T* (x, t)), (13) 
v9 

where  

i==5, 6; T*= T+uZ/2Cp; Ti(x, H i, t)= Tai(x, t), i=  5, 6. (14) 

The connect ion  between the flow p a r a m e t e r s  at the inlet  and outlet  of the  channel  and the p a r a m e t e r s  of the gas  
in the v e s s e l s  is  d e s c r i b e d  in deta i l  in  [2]. At the inle t  to  the channel  the laws of c o n s e r v a t i o n  of m o m e n t u m  
(15) and e n e r g y  (16) a r e  used  fo r  this  p u r p o s e .  At the out let  f r o m  it the law of c o n s e r v a t i o n  of m o m e n t u m  (17) 
is  used  fo r  the s u b c r i t i c a l  mode  of d i s cha rge ,  while  f o r  the c r i t i c a l  mode  the ve loc i ty  i s  equated with the loca l  
ve loc i ty  of sound (18): 

) •  1 ---~-- I R T  + u z ~=o; (16) 

Pz = (P-k 6 F3 P u 2) for Utx=L < AIx=L; (17) 
F z RT x=L 

ul~=L = V ' x ~ l ~ = z  for Ulx=t. = AI~=z- (18) 

The boundary  condi t ions  fo r  Eqs .  (12) at the ends 1--1 and 2--2 of the channe l  walls  a r e  se t  up as  fo l lows.  In 
the c a s e  of s m o o t h  conjugat ion  of the channel  wall with the ad jacent  s ec t ion  of the v e s s e l  wall  the  t e m p e r a t u r e  
of the end is a s s u m e d  to  equal  the t e m p e r a t u r e  of th is  sec t ion .  If  the channel  con juga tes  with the  v e s s e l  at a 
r igh t  angle,  t h e n t h e  boundary  condi t ions  at  the sec t ions  of the boundar ie s  r 3 and F 6 of the channel  walls  which 
a r e  in  contac t  with the v e s s e l  walls  a r e  se t  up in the  s a m e  way,  while boundary  condi t ions  of the  t h i rd  kind in 
the f o r m  (13) a r e  se t  up at the ends .  If  the channel  is  suff ic ient ly  long,  then heat  conduct ion  t h rough  the ends 
can be neg lec ted  and they  can  be cons ide red  as t h e r m a l l y  insu la ted .  

With known p a r a m e t e r s  in the v e s s e l s  the s y s t e m  of equat ions  (9)-(18) is  c losed  by the  cho ice  of the c r i -  
t e r i a l  funct ions  (19) f o r  the coef f ic ien ts  of convec t ive  heat  exchange  and hydrau l i c  r e s i s t a n c e :  

Nui = Nui(Re, Pr . . . .  ); ~ = ~(Re . . . .  ). (19) 

The effect  of the nons t ead ines s  of the f low and heat exchange  on the coef f ic ien t  of heat  t r a n s f e r  is  a l lowed fo r  
in  a c c o r d a n c e  with the r e c o m m e n d a t i o n s  of [4]. In the s y s t e m  (9)-(11) the index i = 3, c o r r e s p o n d i n g  to the 
n u m b e r  of the reg ion  f r o m  which the p a r a m e t e r  is taken ,  is  omi t ted ,  as  i s  done l a t e r  f o r  the p a r a m e t e r s  of the 
flow in the channel ;  in E q s .  (12)-(19) i = 5, 6; 6 = 0 fo r  d i s c h a r g e  f r o m  the channel  in to  the a t m o s p h e r e  6 = 1 
fo r  d i s c h a r g e  into the s ink ve s se l ;  the ini t ia l  condi t ions  a r e  a r b i t r a r y :  

T~(X, O)=T~o(X); u(X, 0)----uo(X); P(X, 0)----P0(X); T(X, 0)=T0(X ). (20) 

The non l inea r  s y s t e m  of d i f fe ren t i a l  equat ions  (1)-(20) is  app rox ima ted  by a d i f f e rence  s y s t e m  on a g r i d ,  
which is c o n s t r u c t e d  as  fo l lows.  The g r id  is  nonuni fo rm in t i m e  and inc ludes  both whole and f r ac t i ona l  l ~ y e r s .  
The g r i d  is  nonun i fo rm with r e s p e c t  to the t r a n s v e r s e  coo rd ina t e  y in the wal ls  of the channel  and the v e s s e l s  
and is  bunched t oward  the s u r f a c e s  of con tac t  between the gas  and the wal l s .  The g r i d  is  un i fo rm a long the 
longi tudinal  coo rd ina t e  x in the channel .  The de r iva t i ve  of  the p roduc t  on the left s ide of (1) i s  expanded,  the 
de r iva t ive  of the  i n t e r n a l  e n e r g y  is  e x p r e s s e d  t h r o u g h  the  de r iva t ive  of the t e m p e r a t u r e ,  the p r e s s u r e  is e l i m i -  
nated f r o m  the r igh t  s ide  of (1) us ing (3), and the  Bernoul l i  equat ion is  used  to  e x p r e s s  the heat  content .  A f t e r  
subs t i tu t ion  of (2) in to  (1) the  s y s t e m  (1), (2) is  wr i t t en  in  v e c t o r  f o r m :  

d y,~ = ?,, (21) 
dt 

where  Xi = (T i ,  mi);  f i  = bril, ~2); fi~ i s  the  r igh t  s ide  of the t r a n s f o r m e d  equat ion (1); f i2"is the r igh t  s ide of 
(2). The s y s t e m  (21) is a p p r o x i m a t e d  by the Runge- -Kut t a  s y s t e m  of the second  o r d e r  of a c c u r a c y  [5]: 
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2 (x i+ . : + +  , --,"-Wv,v) j - a , , , . t=  (t~(,v-,) ,-fflWVN) )/2, j =  1, 2. (22) 

The heat-conduction equation (4) is approximated by the nonlinear implicl ty difference sys tem (23) with a t ime 
step of 0.5 Atm+ 1. The conjugation condition (5) is approximated on the grid by replacing the derivative by the 
difference equation (24): 

~k-k - o~, k'"++ r~"+'~'- k , m - ~ 2  ` 
(P~ C~(N--O .Iht ~7 --(Ys ~h(,v--l) ~U(N) )g = O, 

�9 XE n~h U ~,,, k = I, 2 . . . .  ; (23) 

--)~ih(N--I)Tiu(N) = =i(N)(Ti(N) - -  T~(N) ), XE~hU ~a. (24) 

In (21)-(24) i = 1, 2. Here and la ter  the index (N) denotes the number of the i terat ion of the pa ramete r s  in 
which the value of the gr id  function is calculated.  The index (NN) in (22) equals the number of the last i t e r a -  
tion of the p a r a m e t e r s  in the vesse l s  in the preceding whole layer  for  j = 1) while NN = N for  j = 2. The s y s -  
tem of hydraulic equations is approximated by a nonlinear implicit  difference sys tem of the f i rs t  o rder  of ac -  
curacy)  which i s  writ ten l inearly relat ive to the i teration of the pa rame te r s  being calculated and coincides with 

that in [2] in the calculation of the f i r s t  i terat ion:  

: + ,  + : + ,  : + ,  ; ~( . ) -  ("-,> z ( . , - ~  p )(,,_,)x(N)+ -g~ :{.,,_,) 
p,2+t _ "+l p,,2_+t n~,,+t ,n+t 

t (N) "~ Ur Z{N) -~- -"(N--I)UT(N).-- 

- -  R + T ~ J(N--l)(~UV)+ ,.{N--t) ;(N), = 0; 

( / ' " + '  ~ + "  �9 u"+, ~.+t x -  1 T "+' (p~Fr q_ -(N--I) aN)P ~ ( ~ )  + { . - t )  ; { ^ , ) -  . ~ p . , , ' - , )  

{x_---I r 4 / "+'  ( ~ U 2x~"+ 1 um+l ==. 0. (27} 
x P x ( q s - - q ' )  , { . - t ) - -~  2dec p ){N-t) (N) 

The heat-conduction equation (12) is approximated by an economical ,  nonlinear,  uniform difference sys tem of 

f ract ional  steps (i = 5 ,  6)  

I 1 1 I 
_ _  , " + - 5 - . . . m + ' V  . ~ . " + ' T  . . . " + T  (28 )  1 g~ (91Ci(N--l))htS(N) --(,Ys Ai(N-I)~ptlx(N) )x=  0; 
2 

21.~.~s . +1 "+1 __/,,o~,"+! RT "+l )~ = O. (29) (9,C~aN_I))hTE(N) ~vs i(N--l)ht" iytN) 

The same notation as in (1)-(20) is retained in the sys tem of difference equations (23)-(29) for  the grid analogs 
of the unknown functions. The index h denotes the t r a n s f e r  of the coefficients of the initial heat-conduction 
equations to the grid�9 In the case  when the coefficients of Eqs�9 (4) and (12) a re  continuous their  grid analogs 
a re  obtained by simple t r a n s f e r  to the gr id .  In the case of discontinuous coefficients the grid analogs must be 
obtained with the help of Steklov averagings  [6] over  the cells of the grid.  In this case the statement of the 
problem (1)-(20) must  be supplemented by the conditions of conjugation in the form of boundary conditions of 
the fourth kind at the discontinuity l ines.  The index m is equal to the number of the t ime layer ,  m = 0, 1, 
� 9  M -- 1. The index s is equal to the number  of the gr id  node along the t r ansve r se  coordinate y.  The 

following notation is used for  the grid function W: 

pw=++ = 
'-; + W '+eb: w = +  ' 

; W~ +1 _ - -  ; 
2 Atm+x 

wT++ C+ -C :=  ) 
Atm+l]2 

(3o) 
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b Block for calculation of vessels 
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Fig.  2. Block d i a g r a m  of the method: IC: ini t ial  conditions; BCV: 
block for  calculat ion of ve s se l s ;  BCC: block for  calculat ion of channel; 
BTC: block for  tes t ing  of convergence;  PNS: p repa ra t ion  of next step;  
dashed a r rows :  p a r a m e t e r s  of channel; solid a r rows :  p a r a m e t e r s  of 
v e s s e l s .  

W ; -  W~--W~_I; W.,y=2 W , - - W s _  I . 
H1 H2 s + H2~_1 ' 

W~ - W~+I - -  W,  ., W,~ - W~+I--  W~ 
H2,+ 1 H1 

The gr id  approx imat ion  of the conjugation conditions (13) is cons t ruc ted  in the s a m e  way as (24). The gr id  
analogs of the ini t ial  and boundary conditions (6), (8), (14), and (20) a r e  obtained by the i r  s imple  t r a n s f e r  to 
the gr id  if  they a r e  continuous. If the functions ass igning the ini t ial  and boundary conditions a r e  discontinuous 
then Steklov averag ings  a r e  used to t r a n s f e r  them to the g r id .  The conditions (15)-(18) of conjugation of the 
p a r a m e t e r s  of the gas  in the channel and the v e s s e l s  a r e  approx imated  by s imple  t r a n s f e r  to the gr id  and a r e  
wri t ten l inear ly  re la t ive  to the (N)-th approx imat ion  of the unknowns in the channel.  This  makes  i t  poss ib le ,  
as in [2], to use  them as the boundary conditions in the solution of the s y s t e m  (25)-(27) by the or thogonal  t r i a l -  
run method [7]: 

( m l  \,n+l f~,,,+l ( P  ul ~+~ ,~+~/ . 
R~T.),~, =/ .- , ,v_, ,  + - ~  . ~ - , ,  u,~, k=o' (311 

•  RIT1](N) ~ - - 1  ~(N-I) uuv-~)um) Ix=0; (32) 

( m_.~ r, "7. "~m+, [r~m+' . 6 Fa 1 / ~  P Ul'~m+~ U(N)m+'] 
' ~ ' ~ ) ~  = l "-~'~ ' t:2 \ RT )~N-,~ J~=~ \ , .g~ 

l 
u r n + l  ~ r "II  2 . 

for  (N) x = L  "<.-. I.~ l's ) ( N )  !?x=L, ( 3 3 )  
1 

r 1 - - 1  ~> {• L=L. 04)  ( N )  x=L----  ~[[\ t~ / ( N - - I )  z ( N )  Ix=L for ( N )  x = L  

An i t e ra t ion  a lgor i thm was developed fo r  the solution of the nonl inear  s y s t e m  of a lgebra ic  equations (22)- 
(34). All the equations of the s y s t e m  a r e  wri t ten l inear ly  re la t ive  to i te ra t ion  (N) of the unknowns. In the p ro -  
cess  the coeff ic ients  of the equations a r e  calcula ted in the (N --  1)-th i te ra t ion  of the unknowns. The f i r s t  i t e r a -  
tion of the p a r a m e t e r s  in the f i r s t  s tep in t ime  is taken f r o m  the ini t ial  condit ions,  while in succeeding s teps  
it  is  taken f r o m  the preceding  t ime  l aye r .  The p r o c e s s  of calculat ion of i t e ra t ion  (N) when i t e ra t ion  (N --  1) is  
known is shown in Fig.  2a. The formula t ion  of the (N --  1)-th approximat ion  of the p a r a m e t e r s  in 'the v e s se l s  
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and the channel in Eqs .  (22)-(24) a l lows one to calcula te  the (N)-th approx imat ion  of the p a r a m e t e r s  of the 
v e s s e l s .  The use  of the (N)-th approx imat ion  of the p a r a m e t e r s  of the v e s s e l s  al lows one to ca lcula te  the 
(N)-th approx imat ion  of the p a r a m e t e r s  in the channel .  The p r o c e s s  is  repea ted  until the c r i t e r ion  of con- 
ve rgence  of the i t e ra t ions  is  sa t i s f i ed ,  a f t e r  which the t r ans i t ion  is  made  to  the calculat ion of the next s tep  
in t i m e ,  e t c . ,  up to the se lec t ion  of the t ime  in te rva l .  The calculat ion of the (N) -th approx imat ion  of the p a r a m -  
e t e r s  of  the  v e s s e l s  in each  cycle  of i t e ra t ions  i c a r r i e d  out in the following sequence (Fig. 2b): 1) One step 
is  made  by the Runge--Kutta  s y s t e m  (22) and the (N)-th approx imat ion  of the p a r a m e t e r s  of the gas  in a ves se l  
is  ca lcula ted  in a f rac t iona l  l aye r ;  2) the {N)-th approx imat ion  of the p a r a m e t e r s  of the gas  and the (N --  1)-th 
approx imat ion  of the t e m p e r a t u r e  of the v e s s e l  walls  a r e  subst i tuted into the e r i t e r i a l  functions (7) and the 
(N)-th approx imat ion  of the coeff ic ients  of heat t r a n s f e r  in the v e s s e l s  i s  calculated;  3) the calculated values  
of ~ik(N) and Tm~)l/2 a r e  subst i tu ted into the conjugation conditions (24), a f t e r  which they a r e  used as the 

boundary conditions in the solution of Eqs .  (23) by the t r i a l - r u n  method,  which al lows one to ca lcula te  the 
(N)-th approx imat ion  of the t e m p e r a t u r e  T k, m+ 1/2 in the sec t ions  of the v e s s e l  walls;  4) the opera t ions  1), 2), 

i(N) 
and 3) a r e  r epea ted  fo r  the ent i re  t ime  l a y e r ,  a f t e r  which the t rans i t ion  is made to the calculat ion of the p a r a m -  
e t e r s  in the  channel  in each  cycle of i t e ra t ions  is this  (Fig. 2c): 1) Eqs .  (28) a r e  solved by a t r i a l  run over  
the longitudinal coord ina te ,  during which one uses  as the boundary conditions e i ther  the values  of Tk,  m+ 1/2 i(N) 
calculated earlier, or the analogs of Eqs. (24) for the ends of the channel, or the ends are assumed to be ther- 
mally insulated; 2) for N = 1 the zeroth approximation of the flow parameters (u, P, T)(~) +I is assigned from 
the conditions in the preceding whole time layer, while for N > 1 the (N -- 1)-th iteration of the flow param- 
e te rs  is known; 3) the system of equations (25)-(27) with the boundary conditions (31)-(34) is solved by the 
orthogonal trial-run method and the (N)-th approximation of the flow parameters and the (N -- l)-th approxima- 
tion of the temperature of the channel walls in the whole layer are substituted into the criterial functions (19) 

;m+i is cal- and the (N)-th approximation of the coefficients of heat transfer u i -  m+(N)l, and hydraulic resistance ~ (N) 

eulated; 5) the calculated values of the coefficients of heat exchange and the flow parameters in the channel are 
substituted into the difference analog of the conjugation conditions (13), after which they are used as the bound- 
ary conditions in the solution of Eqs. (29) by a trial run over the transverse coordinate and the calculation of 
Tm+1 With this the calculation of the channel ends and the criteria of convergence of the iterations are tested. 

i(N)" 
An advantage of the iteration algorithm described is that it is easily generalized to the case of a system 

of vessels connected by channels. 

The algorithm presented was realized in the form of an ALGOL program for a BI~SM-6 computer. The 
results of trial calculations permit the conclusion that the proposed method is efficient and is applicable to the 
calculation of processes in technological devices whose scheme is reduced to that discussed here. 

NOTATION 

m, mass of gas in a vessel; U, internal energy; P, pressure; V, volume; G, gas flow rate; I, total en- 
thalpy; T, temperature; u, velocity; p, density; ~, thermal conductivity; F, useful cross-sectional area of gas 
stream; q, heat flux; Q, amount of heat released in a vessel per unit time; FW, area of heat-exchange surface; 
R, gas constant; c, specific heat capacity of wall material; t, time; x, longitudinal coordinate; y, transverse 
coordinate; H, wall thickness; a ,  coefficient of heat transfer; ~, eoeffieientofhydrattlic resistance; de, hydraul- 
ic diameter; ~, adiabatic index; ep, specific heat capacity of the gas with p = eonst; A, velocity of sound; H1, 
step along the longitudinal coordinate; H2, step along the transverse coordinate; At, step in time; X, point of 
the plane; Nu, Nusselt number; Pr, Prandtl number; Gr, Grashof number; Re, Reynolds number. Indices: i, 
number of region; k, number of section of vessel wall; a, surrounding medium; 0, initial; N, number of itera- 
tion; m, number of step in time; r, number of grid node along the longitudinal coordinate. 
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METHOD OF DESCRIPTIVE REGULARIZATION AND 

QUALITY OF APPROXIMATE SOLUTIONS 

V. A. Morozov, N. L. Gol'dman, 
and M. K. Samarin 

UDC 518.12:536.24 

A method of solving Fredholm integral  equations of the f i r s t  kind is descr ibed ,  which is based 
on the a pr ior i  knowledge of the a r rangement  of ex t rema and inflection points of the des i red  
solution and permi t s  taking account of the fundamental qualitative regular i t ies  inherent in the 
exact solution of the problem.  

1 ~ The mathemat ical  theory of the solution of incor rec t ly  formulated problems has been developed 
sufficiently well at this t ime [1, 2]. The main point of this theory is the use of a pr ior i  information about the 
accuracy  of giving the entrance data and (or) about the des i red  solution to some extent. The nature  of this 
information can be twofold: quantitative or  qualitative.  As a rule ,  the major i ty  of methods use quantitative 
information about the accuracy  of giving the entrance data and quite genera l  information about the "smoothnes s" 
of the solution (the Tikhonov regular iza t ion method, the residual  method). The distinctive pecul iar i ty  of the 
Ivanov method of quasisolutions is the possibi l i ty of using not only information of the type mentioned, but also 
just  qualitative information associa ted  with the a pr ior i  representa t ions  of the behavior  of the des i red  solution. 
As a rule ,  an objective basis for  the presence  of such information is intuitive considerat ions aboutthe s impl i c -  
ity of the s t ruc ture  of the des i red  solution as well as cer ta in  genera l  conceptions about the behavior of the 
physical  p rocess  being studied. The f o r m e r  a re  related to the natural  tendency of the r e s e a r c h e r  to identify 
the most  important  and essent ial  i tems in the mathemat ica l  model and can also be dictated by fully defined e s -  
thetic considerat ions .  

The la t ter  appear, for example,  when a perfect ly evident fact in the study of the brightness distr ibution 
of a s ta r  is the drop in intensity f rom the center  of the s ta r  to its edges if, cer ta in ly ,  the s t a r  is unitary,  and 
the presence  of two maxima if the s t a r  is b inary.  

Let us a ssume that the phenomenon being studied is charac te r i zed  quantitatively by the function u = u (x), 
a _< x _< b. Such quantitative charac te r i s t i c s  as the variat ion in the function u(x), the r o o t - m e a n - s q u a r e  value 
of its k- th  der ivat ive ,  e t c . ,  which are  often used in solving incor rec t  p rob lems ,  can be taken as a :measure of 
its "simplici ty.  " It is a lso well known that the behavior of a function is modeled sufficiently effectively on an 
intuitive level if the possible a r rangement  of its cha rac te r i s t i c  points,  ex t remum points,  and the change in c u r -  
vature is given. It is hence cons ide red tha t ,  on the whole, the function will behave in a natural  manner ,  i . e . ,  
is s ingle-valued,  h a s n o  reentrant  points, is sufficiently smooth ,  and there fore ,  can be drawn with one 
"s t roke"  of the pen. Such a c lass  of s imple functions can be given if sections of their  monotonicity and convexity 
a re  indicated. The c lass  of smooth functions with L -- 1 sections of monotonicity can be written by the condi-  
tions 

M = { u ( x ) : ( - - l ) I + " u  ' (x )~O,  x i ~ x ~ x i + l ,  i =  1,2, . . . ,  L - - l } ,  

where xi, i =1 ,  2, . . . ,  L are  ex t rema of the function u(x), a = x  1 < x 2 < . . .  < x L =b  and the pa ramete r  l ,  
equal to 1 or  2, governs  the nature of the monotonicity in the f i r s t  section.  It is hence assumed that M = M 
(x2 , . . .  ,XL_l; l ,  L), i . e . ,  the number  of ex t rema,  the al ternat ion of sections of growth and decrease  in the 
function, and also the a r rangement  of the inner  ex t rema  can vary .  Great  detail  in the c lass  of functions being 
considered will be achieved if sections with curva ture  of constant sign are  a lso extracted.  We then a r r ive  at 
the c lass  
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